
Recently, immunohistochemical examina-
tion of E-cadherin in tissue sam-
ples collected from patients with vitiligo,
after punch grafting, revealed that melano-
cytes from normally pigmented donor
sites may migrate toward lesional skin
and repopulate the depigmented areas
because of decreased E-cadherin expres-
sion (Kovacs et al., 2015). The mecha-
nisms that underly the activation of
melanocytes after punch grafting have not
been fully explained. Nevertheless, the
process might be regulated by epidermal
and dermal cells that should be able to
manage cell adhesion actively.
Therapeutic options for vitiligo are still

limited. Although somemechanisms under-
lying the interplay between oxidative stress
and immunity have been postulated
(Richmond et al., 2013), understanding
mechanisms that cause oxidative stress
could provide valuable information to
identify new therapeutic targets. The chal-
lenge will be to maintain cells metabo-
lically active as requirement for sustaining
the energy demand and coping with oxida-
tive stress. Moreover, the analysis has to be
extended to pigmented skin to both identify
early events in “silent” vitiligo melanocytes
and prevent the spread of the disease.
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Clinical Implications
● In vitiligo, all the skin is affected.

● Modification of pigment distributions in the skin may be associated with
other alterations, such as defects in the epidermal barrier.

● Stabilization of the disease, by targeting nonlesional skin, is an additional
challenge for improving the benefits of treatment.

● Full-body phototherapy may stabilize the disease by inducing the differentia-
tion of melanocytes, with consequent improvements in cell–cell adhesion.

● Counteracting extracellular and intracellular oxidative stress may con-
tribute to reducing melanocyte detachment and disease progression.
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EDA Fibronectin in Keloids Create a
Vicious Cycle of Fibrotic Tumor Formation
Rhiannon M. Kelsh1, Paula J. McKeown-Longo1 and Richard A.F. Clark2

During the early phase of wound healing, first plasma fibronectin (FN) and then in situ
FN are deposited at the site of injury. In situ FN––FN made by tissue cells at the injury
site––often contains an extra domain A (EDA) insert. Multiple wound-related signal
transduction pathways control the deposition of EDA FN, and the EDA insert can in
turn trigger pathways that induce inflammation, increased extracellular matrix
molecule deposition including FN and collagen, and activation of fibroblasts. Together
these pathways can create a vicious cycle that leads to fibrosis or keloid formation.
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FN is an extracellular matrix (ECM)
glycoprotein critical for embryogenesis,
morphogenesis, and wound repair (Clark,
2014). Although plasma fibronectin (FN),
which is synthesized by the liver,
circulates in blood as non-complexed
molecules in a 1:10 ratio with fibrinogen
(Greiling and Clark, 1997), little FN ECM
exists in fully developed tissue (Yamada
and Clark, 1996). However, tissue injury
or inflammation leads to rapid plasma FN
deposition in complex with fibrin
followed by so-called cell FN deposition
by tissue cells a few days later (Yamada
and Clark, 1996). Plasma FN exists as
250 kDa glycoprotein consisting of two
chains, one with and one without a
variable domain (v). Although cell FN
comes from the same gene as plasma FN,
it contains additional spliced variants
with extra domains A and/or B (EDA
and/or EDB; Figure 1). Both plasma and
cell FN are polymerized into fibrils and
deposited into the ECM of most tissues.
Most of the secondary structure of FN is
organized into individually folded
domains based on amino acid homology
(Petersen et al., 1983). These domains,
termed Type I, II, and III, also represent
biologically sites that participate in the
formation of matrix fibrils and provide
binding sites for cells, other matrix mole-
cules, and growth factors (Schwarzbauer
and DeSimone, 2011; Zhu and Clark,
2014). As FN is extremely sensitive to
proteolysis, FN must be deposited
continuously from blood or from in situ
tissue cell production to sustain its pre-
sence (Deno et al., 1983). With healing of
a wound or resolution of inflammation,
both plasma FN and cell FN disappear
rapidly from the tissue (Welch et al., 1990).
Here we focus on FN containing EDA
(EDA FN) that has been found to persist in
sites of skin fibrosis (Bhattacharyya et al.,
2014) and in keloids, as reported in this
issue (Andrews et al., 2015).

EDA FN inductive pathways
During embryonic development, the EDA
domain of FN is highly expressed. How-
ever, its expression is transient as it
disappears with the increasing age of an
organism (Vartio et al., 1987; Pagani
et al., 1991). In fact, the EDA domain of
FN is largely absent from normal, adult
tissue (Oyama et al., 1989). It becomes
upregulated, however, under specific

circumstances of tissue remodeling, such
as during wound repair, tissue injury,
inflammation, and fibrosis (ffrench-
Constant et al., 1989; Peters et al.,
1989; Satoi et al., 2000; Singh et al.,
2004; Muro et al., 2008). The mecha-
nisms that trigger upregulation of the EDA
FN isoform are both cell type specific and
context dependent, making it critical to
understand the regulation of this process
in response to extracellular signals. The
molecular mechanism controlling alter-
native mRNA splicing of the EDA exon
depends on spliceosome assembly and
RNA secondary structure, as well as the
serine/arginine (SR)-rich family of proteins
(Lavigueur et al., 1993; Mermoud et al.,
1994 Cramer et al., 1997; Buratti and
Baralle, 2004). Growth factors, stress
signals, ECM proteins, cytokines, and
stiffness have all been connected
upstream of these SR proteins, ultimately
leading to increased EDA FN expression
(Naro and Sette, 2013).
Over two decades ago, transforming

growth factor-β (TGF-β) was first identi-
fied as a modulator of the EDA isoform
levels in fibroblasts, resulting in an
increased ratio of EDA to total FN
(Balza et al., 1988; Borsi et al., 1990;
reviewed in Leask and Abraham
(2004)). Differential cell type–specific
signaling axes downstream of TGF-β
have also been identified in the
regulation of EDA FN splicing. In
mouse embryonic fibroblasts, it was
shown that activation of the PI3K/AKT/

mTOR signaling pathway facilitates
phosphorylation and activation of the
splicing factor SF2/ASF (also known
as SRSF1), resulting in the increased
expression of EDA FN. It was proposed
that the modulation of AKT activity was
a direct result of TGF-β-induced
downregulation of PTEN (White et al.,
2010). These studies suggest that TGF-β
family members can control EDA levels
by altering activity and/or expression
levels of splicing factors.
In addition to TGF-β, growth factors,

such as HGF and EGF, as well as stress
signals, have been implicated in regulat-
ing increased levels of EDA FN (Inoue
et al., 1999). Interestingly, it is known
that HGF works through the PI3K
cascade to increase levels of EDA FN
(Magnuson et al., 1991; Seebacher et al.,
1988; Blaustein et al., 2004), further
implicating this signaling pathway in
regulating alternative splicing of FN.
Recent evidence suggests that cell–ECM
interactions will alter levels of EDA FN.
Srebrow et al. (2002) demonstrated that
a laminin-rich basement membrane can
modulate the alternative splicing of EDA.
Treatment of fibroblasts with type III and
V collagens promoted the splicing and
increased assembly of EDA FN (Zoppi
et al., 2012). Furthermore, the EDA
domain itself has recently been
implicated in promoting FN synthesis
and fibrillogenesis by dermal fibroblasts
(Shinde et al., 2015). Further studies
designed to understand the molecular
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Figure 1. Depiction of the modular structure of fibronectin. Plasma fibronectin consists of two chains,
made up of repeating, modular structures: type I (blue), type II (green), and type III (yellow). One chain
contains the variable region (purple) and the other does not. Alternative splicing of the gene results in the
synthesis of fibronectin that contains the extra domains A (EDA) and B (EDB; pink).
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mechanisms regulating EDA FN splicing
should provide important insights into
novel strategies for the treatment of
fibrosis and excessive tissue remodeling
seen in hypertrophy and keloids.

EDA FN triggered pathways
EDA FN and TGF-β, coupled with
mechanical stress, are considered the
leading influences in the differentiation
of fibroblasts into myofibroblasts, a
critical cell type in fibrotic disease
(Desmouliere et al., 1993; Vyalov et al.,
1993; Serini et al., 1998). Animal models
of scleroderma, atherosclerosis, cardiac
allograft rejection, and adverse airway
remodeling have demonstrated that EDA
FN promotes the fibrotic phenotypes that
drive pathological progression (Tan et al.,
2004; Arslan et al., 2011; Kohan et al.,
2011; Booth et al., 2012; Bhattacharyya
et al., 2014). In addition, EDA FN has
been used clinically as an indicator of
fibrotic disease and tissue remodeling in
humans (van der Straaten et al., 2004;
Peters et al., 2011). Recently, EDA FN
was shown to increase in skin lesions
and serum from patients with
scleroderma (Bhattacharyya et al., 2014).

EDA has also recently received atten-
tion due to its contribution to patholo-
gical inflammation. The major receptor
believed to mediate EDA's role in
inflammation is the innate immune
receptor, toll-like receptor 4 (TLR-4).
EDA FN has been shown to activate
inflammatory pathways in dermal fibro-
blasts, mast cells, cytotoxic T Cells, and
monocytes via TLR-4 (Okamura et al.,
2002; Gondokaryono et al., 2007;
Lasarte et al., 2007; McFadden et al.,
2011; Kelsh et al., 2014).

Understanding the mole-
cular pathways involving
the expression of EDA
fibronectin and its ability
to enhance stimulation
of those pathways––i.e.,
a positive feedback
loop––it is hoped that
new, more effective
treatment of keloids can
break this vicious cycle.

Other receptors, in addition to TLR-4,
have been identified for the EDA
domain of FN: integrins α4β1, α9β1,
and α4β7 (Liao et al., 2002; Shinde
et al., 2008; Kohan et al., 2010). The
role of these receptors in EDA-mediated
fibrosis and inflammation is still some-
what uncertain. EDA FN was shown to
work through α4β1 to promote a con-
tractile phenotype in human dermal
fibroblasts (Shinde et al., 2015). EDA
has also been shown to mediate TGF-β-
dependent myofibroblast differentiation
and collagen synthesis via the α4β7-
dependent activation of the MAPK/
ERK1/2 pathway. Integrin α9β1 has
also been shown to regulate PI3K/AKT
and ERK1/2 activation in response to
EDA FN, ultimately leading to
epithelial–mesenchymal transition in
lung cancer cells (Sun et al., 2014).
The role of each of these receptors in
the progression of fibrotic disease
remains an important question.
Wound repair of full-thickness skin

injury ideally ends after a few months
with a flat, non-tender scar that is ~ 70%
as strong as normal skin (Gurtner et al.,
2011). Hypertrophic scars and keloids,
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Figure 2. Feed-forward fibrotic loop contributes to Keloid formation. The influence of the pro-fibrotic cytokine, TGF-β, on both epithelial and fibroblast cell
types can result in increased synthesis and deposition of EDA FN. Integrin receptors and TLR-4 on the surface of both cell types mediate intracellular signal
transduction pathways in response to EDA FN resulting in cytokine production, epithelial–mesenchymal transition (EMT), fibroblast activation, and synthesis of
matrix proteins. These cellular outcomes in response to EDA FN all contribute to the fibro-inflammatory environment driving keloid formation. EDA, extra domain
A; FN, fibronectin; TGF-β, transforming growth factor-β; TLR-4, toll-like receptor 4.
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however, sometimes intervene. These
two abnormal responses to wound
repair have fundamentally different
clinical and histological appearances
and distinct clinical outcomes. Hypertro-
phic scars do not invade, but rather
generate tensile stress, on the surroun-
ding tissue, whereas keloids do the
opposite (Bolognia et al., 2012). Given
these facts it is not surprising that hyper-
trophic scar fibroblasts, but not keloid
fibroblasts, express α-smooth muscle
actin, indicative of a myofibroblast
phenotype that can generate substantial
tensile forces on surrounding ECM
(Ehrlich et al., 1994). In contrast, keloid
fibroblasts demonstrate a greater
propensity to proliferate in serum-free
medium (Russell et al., 1988), resist cell
apoptosis (Chodon et al., 2000), and
have increased sensitivity to TGF-β,
which induces synthesis and deposition
of ECM molecules including FN and
collagen (Babu et al., 1992; Bettinger
et al., 1996). In fact, TGF-β1 and β2, the
TGF-β isoforms related to increased
fibroblast ECM production and tissue
fibrosis, are increased in keloid
fibroblasts compared with normal
fibroblasts and are thought to be largely
responsible for fibroblasts’ aggressive
fibroproliferative nature in keloids (Xia
et al., 2004). Furthermore, TGF-β1 and
β2 also increase the expression of EDA
FN (Viedt et al., 1995) and thus may be
responsible for the increased EDA FN
observed in keloids (Andrews et al.,
2015). Interestingly, EDA FN stimulates
TLR-4 signaling (Bhattacharyya et al.,
2014) that in turn augments TGF-β
responses (Bhattacharyya et al., 2013).
Thus, keloids may arise from a feed-
forward mechanism in which EDA-FN
stimulates both TLR-4 and integrins to
augment TGF-β-driven fibroblast activa-
tion and ECM deposition including
collagen and more EDA FN (Figure 2).

EDA FN and keloids
Although it has been known for some
time that TGF-β1 and β2 act through
connective tissue growth factor (Colwell
et al., 2005), more recently it has been
found that β-catenin signaling is
required for TGF-β-mediated fibrosis
(Akhmetshina et al., 2012), which
helps explain why it was previously
found that active TGF-β alone was

insufficient to induce skin fibrosis
(Campaner et al., 2006). Moreover, in
at least one scenario, TLR-4 was found
to activate the beta-catenin signaling.
Hence, TLR-4 stimulation by EDA FN
might augment TGF-β responses both
directly and indirectly creating a vicious
cycle of keloidal fibrotic tumor forma-
tion. The activation of innate immune
pathway signaling downstream of TLR-
-4, culminating in the production of
cytokines and other pro-inflammatory
mediators, suggests that EDA FN has the
ability to act as a damage-associated
molecular pattern (DAMP). Endogenous
DAMPs that arise from the ECM,
such as the EDA FN, are often gene-
rated during tissue remodeling and
fibrosis. Subsequently, these DAMPs
can trigger inflammation and further
contribute to the fibrotic phenotype in
a vicious, feed-forward cycle (Huebener
and Schwabe, 2013). Targeting the
pathways regulating the expression of
EDA FN as well as its receptors may be
key in controlling EDA FN–mediated
inflammation and fibrosis.
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